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Introduction

No doubt, the history of mankind has been shaped by the pitiless 
outbreaks of infectious disease pandemics. Whole nations and 
civilizations have been wiped off the map through the ages. The 
list is long: biblical pharaonic plagues that hit Ancient Egypt in 
the middle of Bronze Age around 1715 BC,1 the “λoιμóς” in 
Athens from 430 to 425 BC set the end of the Periclean golden 
era, the “cocoliztli” epidemics, which occurred during the 16th 
century, resulted in some 13 million deaths, decimating the 
Mesoamerican native population,2 the Black Death bubonic 
plague burst in Europe in 1348, and is estimated to have killed 
over 25 million people in just five years. The pandemic influenza 
virus of 1918–1919 swept through America, Europe, Asia, and 
Africa smashing the globe: the death toll was around 40 million 
people. Two one-year, less severe influenza pandemics followed 
in the next decades: the 1957 and the 1963 influenza pandemics 
resulted to two and one million deaths respectively (World Health 
Organization: http://apps.who.int/iris/handle/10665/68985). In 
the last decades emerging and re-emerging epidemics such as 
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Over the last years, an intensive worldwide effort is speeding 
up the developments in the establishment of a global 
surveillance network for combating pandemics of emergent 
and re-emergent infectious diseases. Scientists from different 
fields extending from medicine and molecular biology to 
computer science and applied mathematics have teamed up 
for rapid assessment of potentially urgent situations. Toward 
this aim mathematical modeling plays an important role in 
efforts that focus on predicting, assessing, and controlling 
potential outbreaks. To better understand and model the 
contagious dynamics the impact of numerous variables 
ranging from the micro host–pathogen level to host-to-host 
interactions, as well as prevailing ecological, social, economic, 
and demographic factors across the globe have to be analyzed 
and thoroughly studied. Here, we present and discuss the main 
approaches that are used for the surveillance and modeling of 
infectious disease dynamics. We present the basic concepts 
underpinning their implementation and practice and for each 
category we give an annotated list of representative works.
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AIDS, measles, malaria, and tuberculosis cause death to millions 
of people each year. According to the UNAIDS report on the 
global AIDS epidemic, an estimated 34 million people, including 
3.4 million children, were living with HIV worldwide at the end 
of 2010, while the related deaths and new infections were 1.8 and 
2.7 million, respectively.3

The rapid technological and theoretical progress has dra-
matically enhanced our arsenal in fighting epidemics and we are 
getting better on it. The global surveillance network is growing 
under an intensive worldwide effort. We are now able to produce 
effective vaccines and antiviral drugs and knowledge goes deep 
in details such as the molecular structure of a variety of viruses. 
A large and intensive research is evolving for the design of better 
drugs and vaccines. Yet, studies warn us that a new pandemic—
influenza-type is the most worrisome one—is sooner or later on 
the way.4 The critical question(s) is not whether but when it will 
arise, how it is going to spread, how deadly it will be, who should 
get the vaccine when not all can, how likely are multiple waves 
of re-emergence and what type of intervention may be applied to 
stop the spread. Unfortunately, even with all the advances, we 
still don’t have robust answers.

The problem stems mainly from two reasons: (1) the continu-
ous and ever-lasting mutations of the viruses, and (2) the com-
plexity in the disease transmission mechanism. Unfortunately, 
the odds are that in a real crisis, even if researchers succeed to 
come up with a vaccine tailor-made for an emerged virus strain, 
it is doubtful that it would stop a pandemic.5

The complex multi-scale interplay between a host of factors 
ranging from the micro host–pathogen and individual-scale host–
host interactions to macro-scale ecological, social, economic, and 
demographic conditions across the globe complicated by techni-
cal issues such as the time lag between vaccine prototype develop-
ment and commercial production and distribution imposes a real 
impediment to our control strategy potential.

Mathematical, statistical models and computational engineer-
ing are playing a most valuable role in shedding light on the prob-
lem and for helping make decisions.

The Beginning of Mathematical Modeling  
in Epidemiology

The very first publication addressing the mathematical model-
ing of epidemics dates back in 1766. In this seminal paper, Essai 
d’une nouvelle analyze de la mortalité causée par la petite vérole,6 
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Mathematical Modeling Methodologies  
in Epidemiology

Mathematical modeling and simulation allows for rapid assess-
ment. Simulation is also used when the cost of collecting data is 
prohibitively expensive, or there are a large number of experimen-
tal conditions to test. Over the years, a vast number of approaches 
have been proposed looking at the problem from different per-
spectives. These encompass three general categories (see Fig. 1): 
(1) statistical methods for surveillance of outbreaks and identi-
fication of spatial patterns in real epidemics, (2) mathematical 
models within the context of dynamical systems (also called 
state-space models) used to forecast the evolution of a “hypo-
thetical” or on-going epidemic spread, and (3) machine learning/ 
expert methods for the forecasting of the evolution of an ongoing 
epidemic. For all three of these categories there are again differ-
ent approaches weaving a big and diverse literature. Here, we try 
to draw the map of these approaches and try to describe their 
basic underpinning concepts.

Statistical-Based Methods for Epidemic Surveillance

One of the most important aspects in epidemics revolves around 
the surveillance, early detection of possible outbreaks and pat-
terns that may help controlling a spread. One of the very first 
success stories in the area is the modeling of cholera epidemic that 
swept through London in 1854. At that time John Snow, a physi-
cian, collected spatiotemporal data and by visualizing them in a 
map found that there was a particular pattern around the Broad 
Street water pump,21 which actually was the zero point of trans-
mission. His analysis helped eradicate the disease. In the dawn of 
20th century Greenwood an epidemiologist and statistician was 
the first Professor of Epidemiology and Statistics at the London 
School of Hygiene and Tropical Diseases establishing a rigorous 
mathematical connection between fields.22

Today, global initiatives to combat epidemics require effective 
domestic action mechanisms and preparedness through the globe. 
An intensive worldwide effort led by World Health Organization 
and Centers for Disease Control is speeding up the developments 
for the establishment of a global surveillance network. New 
emerged pandemics such as the AIDS, the severe acute respira-
tory syndrome (SARS) of 2002–2003 and the H1N1 swine flu 
of 2009 pandemics reminds us about the importance of surveil-
lance and prompt outbreak detection. Toward this aim, statisti-
cal methods have enhanced our potential in fighting epidemics 
allowing for rapid assessment of emerging situations. Obviously, 
the correctness of the data and the selection of the appropriate 
methodology are crucial for the construction of statistical models 
that can capture in an efficient robust way the communicable 
disease characteristics.

To date, several statistical methods have been proposed (see 
also Unkel et al. [2012]23 for a review of statistical methods for 
the detection of disease outbreaks). In the website of Centers for 
Disease Control and Prevention (CDC) (http://www.cdc.gov/) 
one can find a list of references in the field. Here we present 

Daniel Bernoulli developed a mathematical model to analyze the 
mortality due to smallpox in England, which at that time was one 
in 14 of the total mortality. Bernoulli used his model to show that 
inoculation against the virus would increase the life expectancy 
at birth by about three years. A translation in English and review 
of this work can be found in Sally Blower (2004),7 while a revi-
sion of the main findings and a presentation of the criticism by 
D’Alembert appears in Dietz and Heesterbeek (2002).8 Lambert, 
in 1772, followed up the work of Bernoulli extending the model 
by incorporating age-dependent parameters.9 Laplace has also 
worked on the same concept.10 However this line of research has 
not been developed systematically until the benchmark paper of 
Ross in 1911, which actually establishes modern mathematical 
epidemiology.11 In this work, Ross addressed the mechanistic a 
priori modeling approach using a set of equations to approximate 
the discrete-time dynamics of malaria through the mosquito-
borne pathogen transmission (for a discussion and a review of 
this model see also Smith et al. [2012]12).

Following up the work of Ross, Kermack and McKendrick 
published three seminal papers which founded the determin-
istic compartmental epidemic modeling.13-15 In these papers, 
they addressed the mass–action incident in disease transmission 
cycle, suggesting that the probability of infection of a susceptible 
(virgin from illness) is analogous to the number of its contacts 
with infected individuals. Hence, the rate at which susceptibles 
become infected is given by kSI where S and I represent popu-
lation densities of susceptible and infected people, respectively. 
In this context, the rate at which infected individuals become 
recovered is given by λI, while the rate at which recovered indi-
viduals become again susceptible is given by μR ; k, λ and μ are 
analogy constants. This mechanistic-deterministic representa-
tion holds strong analogy to the Law of Mass Action16 introduced 
by Guldberg and Waage in 1864 and is called the SIR model, 
implying homogeneous mixing of the contacts and conserva-
tion of the total mass (population) as well as relatively low rates 
of interaction. Forty years after the paper of Ross, MacDonald 
extended Ross’s model to explain in depth the transmission pro-
cess of malaria and propose methods for eradicating the disease 
on an operational level. Due to the importance of MacDonald’s 
contribution to the field by exploiting the use of computers, 
mathematical models for the dynamics and the control of mos-
quito-transmitted pathogens are known as Ross–MacDonald 
models.12

At this point it would be remiss of us not to mention the work 
of Enko,17-19 who in 1889 published a remarkable probabilistic 
model for describing the epidemic of measles in discrete time. 
With the use of the model, Enko evaluated the number of con-
tacts between infectives and susceptibles in the population. The 
model of Enko is the precursor of the famous Reed-Frost chain 
binomial model introduced by W.H. Frost in 1928 in biostatistics 
lectures at Johns Hopkins University (not published then in a 
journal, but published in 197920). This model assumes that the 
infection spreads from an infected to a susceptible individual 
through discrete time Markov chain events. This representation 
set the basis of contemporary stochastic epidemic modeling.
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assessment have been also proposed.27 Today, the above approach 
is used by the Centers for Disease Control in the US, Australia, 
France, and Italy for the detection of influenza outbreaks.

While this approach is very popular among epidemiologists 
for predicting and surveillance purposes, one has to be cautious 
about their use as the form of the equations relies usually on ad 
hoc assumptions on the dependence between the dynamics of a 
disease and the independent factors (variables) that determine its 
spread. In addition, the choice of the model (linear/nonlinear), 
assumptions on the statistical properties (for example indepen-
dence, normal distribution and fixed variance) of the unmodeled 
dynamics (represented by e(t)) flash a “note of caution” in their 
use especially for the surveillance and prediction of outbreaks of 
new emerging epidemics.

Times series analysis based on autoregressive models such as 
the autoregressive integrated moving average model (ARIMA) 
and seasonal ARIMA (SARIMA)30-33 as well as neural net-
works.34 These models relax the hypothesis of autocorrelation of 
regression models as well as the hypothesis of simple autoregres-
sive models such as AR (autoregressive) and ARMA (autoregres-
sive moving) in which past disturbances are not modeled. In this 
category, ARIMA models are the most commonly used. Their 
general form reads:

where y(t) denotes a stationary stochastic process at time t with 
mean value E(y(t)) = μ; z-1 is the backward shift operator defined 
by z-ky(t) = y(t - k) and Δd is the differencing operator of order 
d defined by Δd ≡ (1 - z-1)d; A(z-1) is the autoregressive operator 

defined as  ; B(z-1) is the mov-

ing-average operator defined by  ;  

and discuss the most common schemes that can be classified as 
follows:

Regression methods.24-29 Regression models try to detect an 
outbreak from time-series of epidemic-free periods by monitoring 
a statistic of reported infected cases, say y(t). An epidemic alert 
is raised when a certain threshold, say k, is surpassed, defined by 

, (μ being the mean value of the time-series distri-
bution) within a confidence interval (usually of 95%).

A basic regression model is that proposed from Serfling which 
was initially constructed to monitor the deaths of influenza based 
on the seasonal pattern of pneumonia and influenza deaths.24 
Due to the seasonal behavior of the disease the following cyclic 
regression model has been addressed:

θ is a linear function of time t while the coefficients are to be 
determined by a parameter identification technique. The cosine 
and sine terms are used to approximate cyclical seasonal patterns; 
e(t) is the noise (assumed that is Gaussian distributed with mean 
zero and variance σ2) which is estimated from the time-series. In 
the original paper of Serfling, y(t) was the expected mean value of 
total deaths due to pneumonia and influenza in units of 4-weeks 
periods. The model was fitted using data from 108 US cities for a 
3 year period starting in September of 1955.

Using least squares estimation Serfling ended up to the fol-
lowing model:

Other models including square terms, t2, to account long-term 
changes due to factors such as the population growth or disease 

Figure 1. An overview of mathematical models for infectious diseases.
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where μ
0
 and μ

1
 are the mean values of the in-control and out-

of-control Poisson distributions.
For an epidemic that involves time-varying characteristics, 

such as seasonality, the reference parameter is now time-varying 
itself, i.e., k ≡ k(t) .

The EWMA control chart method monitors infectious dis-
ease dynamics using the following recursive statistical estimator, 
which in its simple form reads:

z(t
0
) ≡ z(0) = 0

, i ≥ 1 .
γ is a “forgetting” factor, a number between 0 and 1 which 

weights the significance of past values. Actually this factor 
reduces the importance of past observed information in estimat-
ing future. Again, an alarm is raised at time t

i
 if z(t

i
) > h .

Other statistical process control methods such as temporal 
scan statistics have been also used.46,50,51

Hidden Markov models (HMM) used to explain statisti-
cal correlation in time series.52,53 The question that the HMMs 
come to answer in epidemiology is the following: how can we 
infer about the dynamics of a particular infectious disease and 
forecast its outbreak when we cannot monitor/record explicitly 
the characteristics of the disease but we can observe some pos-
sible indicators of the disease? For example, can we forecast the 
evolution of an influenza epidemic by monitoring for example 
the number of reported cases as recorded through a surveillance 
network of physicians or in hospital units?52,54 HMM models are 
exploited exactly under these limitations/ constraints. Within 
this context, let us denote by Y(t) the stochastic process of the 
unobserved (hidden) state, e.g., the number of cases of the dis-
ease in the population at time t and with O(t) the stochastic 
process of the observable states.

Formally, HMMs are Markov processes, i.e., stochastic pro-
cesses which satisfy the so called Markov property (here for the 
sake of presentation we assume discrete in time Markov pro-
cesses) defined by:

along with the time-invariant transition probability between 
two realizations, say y

i
(.), y

j
(.):

, , j=1, 2, 
…, n

The above relations simply state that all the necessary infor-
mation for predicting the distribution of Y(t) at time Y(t) with a 
certain probability defined by P(.) is contained within Y(t - 1); 
y(.) denotes a realization of the stochastic process Y(.).

In HMMs, the following conditional independence assump-
tion holds:

e(t) is the residual (noise) at time t representing the part of the 
measurement that cannot be predicted from previous mea-
surements. For d = 0 and n

a
 = 0 one gets the moving average 

model, while for d = 1, n
a
 = n

b
 = 0 one gets the random walk 

with drift. Seasonal differencing enters naturally in the above 
framework by considering the seasonal differencing operator 

 where k is the length of seasonal cycle 
and S is the degree of seasonal differencing producing series of 
changes from one season to the next.

The time-series is then split in two sets: one containing the 
times-series serving as a training set, and another one containing 
the remaining data serving as a test (validation) set. The Akaike 
Information Criterion35 is usually applied to identify the optimal 
model order by compromising between the goodness-of-fit and 
number of parameters. The fitted model is then used for the forecast-
ing of disease evolution. The reliability of such approaches is limited 
mostly by (1) the statistical uncertainty related to the estimation 
of the values of the unknown parameters and (2) the hypotheses 
related to the statistical properties of the corresponding time series.

Statistical process control methods including cumulative 
sum (CUSUM) charts36-41 and exponentially weighted moving 
average (EWMA)42,43-based methods. CUSUM is probably the 
most common used technique for the detection of disease out-
breaks. This is achieved by monitoring a cumulative performance 
measure over time. Let us consider the number of infected cases 
y(t

i
) as observed at different time instances t

i
, i = 1, 2, …, n . In 

its simple representation, for a single parameter process, CUSUM 
is defined as

or in a recursive form as
CUSUM (0) = 0

, i ≥ 0
where k is a reference value corresponding to the difference 

between to the in-control and the out-of-control mean. The pro-
cess is considered to be in-control if CUSUM(i) < h with h denot-
ing a threshold (its value is usually taken to be three times the 
standard deviation from the baseline/mean value of in-control-
observations). An alarm is raised at time t

i
 if CUSUM(i) exceeds 

h; the process is considered to be out-of-control. The reference 
value k is determined by likelihood ratio based methods.44-49 
Hence, denoting by f(θ

0
) and f(θ

1
) the probability function of 

the in-control and out-of-control processes with parameters θ
0
 

and θ
1
 respectively, the reference value reads:

The probability functions f(θ
0
) and f(θ

1
) and their parameters 

can be estimated using data from past periods. For Poisson distri-
butions the above relation reads:
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demographic variables (such as age, gender, social status, spa-
tial characteristics) on the survival rates, i.e., occurrence rates of 
events such as death or infection in the population.85,86

Mathematical/Mechanistic State-Space Models

According to the level of the approximation of the reality and 
increasing complexity mathematical models may be categorized 
in the following categories:

“Continuum” models in the form of differential and/or 
(integro)-partial differential equations. Continuum models 
describe the coarse-grained dynamics of the epidemics in the 
population.87-90 One might, for example, study a model for the 
evolution of the disease as a function of the age and the time 
since vaccination91,92 or investigate the influence of quarantine or 
isolation of the infected part of the population.93,94 Such models 
can be explored using powerful analysis techniques for ordinary 
or partial differential equations. However, due to the complex-
ity and the stochasticity of the phenomena, most available con-
tinuum models are often only qualitative caricatures that cannot 
capture all of the details, therefore compromising epidemiologi-
cal realism.

Within this context, the population is divided in compart-
ments in accordance to the state of their health, such as sus-
ceptible (S), infected (I), and recovered (R). Other states of the 
population linked with control policies such as vaccinated (V ) 
and quarantined (Q) are also used.

The compartmental SIR mass-action model of Kermack and 
McKendrick (1922) is the basis of such models. In this repre-
sentation, it is assumed that an infected individual infects a sus-
ceptible with a probability p

S→I
 and that an infected individual 

recovers with a probability p
I→R

. The systems dynamics under the 
mass-balance formulation can be approximated by the following 
three ordinary differential equations:95,96

where P
t
({S, I, R}) denotes the probability that an individual 

is on one of the states {S, I, R} at time t and P
t
(A,B) is the pair 

joint probability to have states A and B communicating at time 
t; N(S) denotes the set of links of a susceptible individual. The 
above equations are not in a closed form. Assuming Markovian 
behavior of the underlying process, P

t
(S,I) = P

t
(S)P

t
(I). Under 

the mean field approximation, assuming that the population is 
perfectly mixed and that every susceptible has the same prob-
ability of becoming infected the probabilities are equated to the 
expected (mean) values of the corresponding variables in the pop-
ulation. These assumptions lead to the following set of equations:

where S, I, R denote expected (mean) values; a and 1/β denote 
mean values of the disease transmission probability and length 
of the period for which an individual can transmit the disease 
before recovering. The above set of equations is the celebrated 
Kermack and McKendrick model. When a recovered individual 

Here, the transition probability between an observed, say o
j
(.), 

and a hidden state, say y
i
(.), is defined as

, , j=1, 2,…, m
There are three basic questions that have to be answered here: 

(1) what is the likelihood of the observed sequence, (2) what is 
the most likely hidden sequence given a

ij
,b

ij
 and the observation 

sequence, and (3) given the observation sequence, which are the 
HMM parameters, i.e., a

ij
,b

ij
 and initial distribution of observed 

states that maximize the likelihood of the observation sequence 
and/or hidden sequence. The first problem is usually tackled with 
the use of the forward-backward algorithm,55 the second problem 
with the use of the Viterbi algorithm,56 and the third problem 
with the use of the so-called Expectation-Maximization (EM) 
algorithm.57

Spatial models for monitoring, identifying and forecasting 
disease outbreaks in different locations.58-64 Most of the infec-
tious diseases result to strong spatio-temporal patterns whose 
systematic analysis is of outmost importance for better under-
standing, predicting and combating outbreaks. Spatial surveil-
lance requires the use of multivariate techniques.65 Most of the 
multivariate methods can be viewed as extensions of standard 
univariate methods—as the ones described above—; however, 
there are others such as clustering, principal component analy-
sis (PCA) based methods that do not have a common ancestor 
with univariate ones.66 Kleinshmidt et al. (2000) used a two tier 
approach for the surveillance of malaria.67 They used regression 
analysis on the larger scale and kriging68 to interpolate the count 
data at an unobserved location in order to forecast the prevalence 
of the disease in the local scale. Cohen et al. (2010) exploited PCA 
to create a single surveillance index that can be used to summa-
rize temporal and spatial trends of malaria in India.69 Coleman 
et al. (2009) used the SatScan freeware software (http://www.
satscan.org/) to identify malaria outbreaks to a province of South 
Africa by detecting time and space clusters.70 The SatScan soft-
ware is based on the spatial scan statistic71,72 and the Bernoulli 
spatial model.73 SatScan has been also exploited by Gaudart et al. 
(2006) to identify spatio-temporal clusters of high risk incidence 
of malaria in a Mali village.74 A temporal analysis using ARIMA 
technique was also undertaken.

To this end, we should also mention the use of copulas75,76 
(joint distribution functions used to model the dependencies 
between random variables based on given/known marginal 
distributions of the individual variables) for parametric multi-
variate analysis. Copulas can be integrated naturally within the 
HMM framework and hazard analysis approaches such as the 
Cox77,78 and Plackett–Dale79 survival models to better understand 
and ultimately design more efficient intervention policies such 
as vaccination on targeted parts of the population and project 
future trends for risk assessment especially for fatal diseases such 
as AIDS.80-84 Such models are used to quantify the relation of 
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host-host interactions (see, e.g., Webb et al., 2005104). In Gaudart 
et al. (2010), the Ross and McKendrik model has been extended 
to incorporate demographics and genetic changes in the popula-
tions to simulate the spread of malaria in Mali and the plague in 
the Middle Ages.105 The authors have employed the Archimedean 
copula approach to relate the risk of infection and biological age. 
In another study the authors have augmented the model by age 
classes and with a diffusion term to account for spatial effects 
in order to approximate the epidemic front wave dynamics of 
the Black Death between 1348 and 1350.106 In Demongeot et 
al. (2012) the Ross and McKendrik SIR model has been revised 
to incorporate demographic and spatial dynamics introducing 
continuous age classes and diffusion of both human and vectors 
species subpopulations within the infected zones.107 The model 
has been used to simulated the spread of malaria in Bancoumana, 
Mali.

Stochastic models including discrete and continuous-time 
individual based Markov-chain models.108-110 These are usually 
individual-level models that relax the hypothesis of the mean 
field approximations of infinite population and perfect mixing 
introducing the uniqueness of the individual behavior including 
multiple heterogeneous characteristics. The main representative 
in the category is the discrete Markov chains (DMC). In DMC 
both time and states are defined on a discrete set of values. The 
states of the individuals change at every discrete time step in a 
probabilistic manner according to simple rules involving their 
own states and the states of their links satisfying the Markov 
property, i.e., that that the future values of the states at time t + 
Δt depend only on the values of the states at the previous time 
step t, i.e.

For example, for a stochastic SIRS-like model these transition 
rules may read:

• Rule #1: An infected individual (I) infects a susceptible (S) 
link with a probability p

S→I
 = λ if an active physical communica-

tion exists between them.
• Rule #2: An infected individual (I) recovers with a prob-

ability p
I→R

 = δ.
• Rule #3: A recovered individual (R) becomes susceptible (S) 

with a probability p
R→S

 = γ. This condition expresses the case of 
temporal immunity.

When these transition probabilities remain constant in time, 
the Markov process is then called time homogenous Markov pro-
cess. The links between individuals form the contact network 
through which the disease spreads. For simple DMC models 
this network is assumed to be a fully connected graph resulting 
to homogeneous mixing of individuals. For this case and in the 
limit of infinite number of individuals, the stochastic model can 
be regarded as a mean field deterministic model.

For a uniform distribution with z links per individual and in 
the limit of an infinite size population the governing equations 
read:

However the above deterministic mean field approximations 
may impose important bias when the assumptions about infinite 

becomes again susceptible after a period of time 1/γ then the 
SIRS mean field model becomes:

In the Kermack and McKendrick model, the disease becomes 

epidemic, i.e.,  if and only if . Hence, the 

number of infective will increase as long as . At   
 
the number of infected cases reach a maximum and after this it 

decreases to zero. The threshold  is called the basic  
 
reproduction number (R

0
) and indicates whether the disease will 

become epidemic (if R
0
 > 1) or it will die out (if R

0
 < 1).

Generally speaking, R
0
 represents the average number of sec-

ondary infections produced from a single infected individual 
introduced into a completely susceptible population. A transmis-
sion potential index that relaxes the hypothesis of the fully sus-
ceptible population is the effective reproduction number defined 
as the average number of secondary infections produced from 
a single infected individual in a population which is already 
infected from a disease. The parameters of these models can be 
estimated using epidemic data from past periods. Within this 
context Coburn et al. (2009) give a review on simulating influ-
enza including swine flu (H1N1) with SIR models.97 Nichol et al. 
(2010) used a SIR model to simulate influenza dynamics in a 
college campus and through this to assess the impact of various 
scenarios of vaccinations.98 Correia et al. (2011) used a SIR model 
to study the measles and hepatitis C in Portugal using data from 
1996 until 2007.99

SIR-type models have also been extended to incorporate 
demographics such as age distributions, mortality and spatial 
dependence of the spread to account for diffusion and migration 
effects as well as genetic mutations in the interacting populations, 
thus enhancing their realism.

Gaudart et al. (2009) addressed a modified McDonald’s SIRS 
model to approximate the dynamics of malaria in the region 
Bancoumana of Mali that deployed from June 1996 to June 
2001.100 The McDonald’s model has been extended to incorpo-
rate the state of contagious children as well as the state of suscep-
tible Anopheles and the state of contagious Anopheles. Magal et 
al. (2010)101 presented an age-dependent infection model with a 
mass action law, and analyze its stability using a Lyapunov func-
tion. Metcalf et al. (2011) developed a metapopulation SIR-based 
model including the probability of infection by age to predict the 
rubella dynamics in Peru.102 Ajelli et al. (2011) developed an SIR-
based metapopulation model that incorporates a spatial contact 
matrix describing the mixing level between Italian regions.103 The 
authors used the model to predict the spatiotemporal dynamics 
of hepatitis A in the south regions of Italy. The model was fitted 
using weekly time series of reported rubella cases from 1997 to 
2009. The same type of models have been also used to model 
nosocomial epidemics modeled both at the level of pathogen and 
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outbreaks. Vaccination, quarantine, and/or use of antiviral drugs 
on targeted parts of the population have to be carefully designed 
for the efficient combat of an emerged epidemic. Poor under-
standing of the infectious disease dynamics as these emerge due 
to heterogeneous contact interactions may result to serious nega-
tive consequences. Over the last years, there has been an intense 
effort in studying the interplay between the emergent dynamics 
of infectious diseases and the underlying topology of transmis-
sion network.

Within this context, Kuperman and Abramson (2001) showed 
how changes in the rewiring probability used to construct small-
world networks influence the dynamics of a simple epidemic 
model.124 It was shown that there exists a critical value of the 
rewiring probability that marks the onset of a phase transition 
from stationary endemic situations to self-sustained oscillations. 
Hwang et al. (2005) studied the influence of the clustering coeffi-
cient and average path length on epidemic outbreaks evolving on 
scale free networks.125 Shirley and Rushton studied the impact of 
four different types of network topologies, namely Erdős–Rényi, 
regular lattices, small-world, and scale free on epidemic dynam-
ics.126 Reppas et al. (2012) studied the influence of the path 
length of small world networks on the dynamics of a simple SIRS 
stochastic epidemic model.127 Studies on adaptive networks have 
only very recently begun to appear in the physics literature128 
indicating that adaptation can trigger effects that are not present 
in other types of networks.

Regarding real-world cases, Read et al. (2008) studied the 
impact of social networking to the spread of a communicable 
disease by constructing the underlying contact network from a 
diary-based survey from 49 adults who recorded 8661 encounters 
with 3528 different individuals over 14 non-consecutive days.123 
Christakis and Fowler (2010) studied a flu outbreak at Harvard 
University in 2009.129 Following 744 students they mapped the 
transmission network following their friends and contacts and 
detected the critical nodes and links that were responsible for 
rapid spread and could be used as early warning detectors. In 
particular, by measuring several statistics of the underlying net-
work topology, they quantified the centrality of individuals in 
the network, i.e., how much likely is for the disease to pass and 
transmitted from an individual to other individuals through the 
network. Salathè et al. (2010) used wireless sensors to obtain 
close proximity interactions during a typical day at an American 
high school.130 Based on these measures, they constructed the 
transmission network and studied the potential of the disease 
to spread in terms of topological characteristics such as transi-
tivity and average-path-length with respect to the duration of 
contact between students. Keeling et al. (2010) constructed two 
metapopulation networks based on information available from 
2001 on the commuter movements between 10 000 wards in 
Great Britain.121 From the cattle trading system they also con-
structed the movement network between 150 000 farms. They 
consider four infectious diseases, namely influenza and small-
pox in humans and foot-and-mouth disease or tuberculosis in 
cattle. Comparing simulations with actual data the authors 
raised the question if simple network models can eventually 
catch the influence of movements in an epidemic. Furthermore 

size population, homogeneous individuals, homogenous or ran-
dom regular networks do not hold. Therefore, they may miss 
important quantitative and/or qualitative information at the 
coarse-grained/emergent (continuum) level. This situation wors-
ens as the heterogeneity becomes stronger (e.g., interactions on 
more complex networks with finite size populations).

Within this context, a comparison between stochastic and 
the analogous deterministic models is given in Allen and Burgin 
(2000).111 Lekone et al. (2006) used a stochastic SEIR model 
(E stands for exposed to the disease individuals) to simulate 
the dynamics of Ebola outbreak in the Democratic Republic of 
Congo in 1995.112 Bishai et al. (2011) used a stochastic SIR model 
with age structure and two additional states (compartments) to 
describe heterogeneity in vaccination.113 The authors combined 
the epidemic model with an economic model incorporating the 
costs of the control disease policies to study the cost effectiveness 
of supplemental immunization activities for measles in Uganda. 
Wang et al. (2012) developed a stochastic model within the SIR 
concept to simulate and better understand the multi-periodic pat-
terns in outbreaks of avian flu in North America.114 The model 
assumes random contact between individuals as well as environ-
mental transmission of the virus.

Non-markovian SIR-like models have been also proposed. 
These models incorporate “memory” in transmission dynamics. 
For example, Streftaris and Gibson (2004) propose a non-mar-
kovian SIR model for the foot-and-mouth disease outbreaks.115 
In their model they assume that individuals remain infected for 
a time drawn randomly from a two-parameter Weibull distribu-
tion. Randomization of classical deterministic SIR-like mod-
els, coming from the random, chemical kinetics to account for 
non-constant population with age classes due to birth and death 
processes and spatial demographics have been also been pro-
posed.116 Within this context, Allen and Burgin (2000) compare 
the dynamics of deterministic and their counterparts stochastic 
epidemics models for populations with constant and variable.117

Complex network models118-120 that are relaxing the hypoth-
esis of the above stochastic models that the interactions between 
individuals are instantaneous and homogeneous.121-123 One of 
the most critical problems in epidemics concerns the dynamic 
effects of the contact network heterogeneity. Contacts between 
individuals evolve under numerous complicated and strongly 
heterogeneous modes that are influenced by a broad spectrum 
of factors, ranging from the pathogen inherent variability and 
host–pathogen interaction stochasticity characterizing the trans-
mission mechanisms of a particular disease, to the population-
level ones complicated by environmental, seasonal, economic, 
and demographic conditions. Furthermore, in many situations 
the spread of an epidemic is shaped by the topology of the con-
tact social network, and, vice versa, the dynamic evolution of the 
transmission network depends on the emergent dynamics of the 
epidemic. For example, in a severe epidemic outbreak, a change 
in the state of endemicity of a particular part of the population 
can cause a significant change in the characteristics of the trans-
mission network (due to, e.g., link-cutting due hospitalization). 
Understanding this complex behavior is of outmost importance 
to public-health measures and policies for controlling diseases 
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from population mobility based on TRANSIMS and epidemic 
models of host-pathogen and host-host interactions.132 EpiSims, 
developed at Los Alamos National Laboratory creates a synthetic 
population based on the Transportation Analysis and Simulation 
System (TRANSIMS, http://code.google.com/p/transims/). 
The authors simulated the spread of an infectious disease in the 
area of Portland, Oregon, US whose network involves 1.5 million 
people (nodes), 180 000 locations and a total of 1.6 million ver-
tices. Ferguson et al. (2005) developed and presented the simu-
lations results concerning the H5N1 influenza A pandemic in 
Southeast Asia.133 Their simulations involved 85 million agents 
residing in Thailand and a 100 km-wide zone of neighboring 
countries. Demographic data involving details about households, 
location of schools and workplaces, and population mobility 
where taken into account. Using the detailed agent-based simu-
lations they evaluated the containment strategies with respect 
to the potential of preventing a pandemic and the distribution 
of drugs necessary to eradicate the spread. Burke et al. (2006) 
presented an agent-based model for the spread of smallpox. 
The model considered hypothetical towns of 6000- and 50 000 
inhabitants.134 A distribution of households, workplaces, schools, 
and hospital units was constructed based on US demographic 
data. The authors investigated the efficiency of various contagion 
control scenarios such as vaccination of households, children at 
schools, isolation of infected persons and vaccination of medical 
staff in hospitals. Balcan et al. (2009) investigated how short-
scale and long-scale contacts due to air travel can influence the 
spatiotemporal pattern of a pandemic.135 The authors made use of 
the GLEaM agent-based computational platform (http://www.
gleamviz.org/) consisting of three data layers: the demographic/
population, the mobility-related, and the epidemic modeling 
layer. In this study, real-world data from 29 countries around the 
globe as well as air travel flowing from 3362 airports indexed 
by IATA were integrated into a spatial metapopulation epidemic 
model.

Empirical/Machine Learning-Based Models

Over the last years, machine learning using data extracted from 
internet-based communication platforms and search engines 
have been used to extract early indicators of social trends. 
Microblogging socializing services and web searching platforms 
have revolutionized the way private and publicly available infor-
mation diffuses. Such emerging technology appears promising 
to data mining agents’ personal behavior. For example, such ser-
vices with the aid of search queries have been exploited as tools to 
stock-market prediction and movie box-office revenue.

Within this context Ginsberg et al. (2009) exploited the aid 
of search queries on the Google platform for early detection of 
influenza epidemic in the US.136 The authors used around 50 mil-
lion Google web queries related to influenza symptoms between 
2003 and 2008. A linear model using the log-odds of a visit of a 
physician in a certain region and the log-odds of a related search 
query submitted from the same region was fitted using publicly 
available data from the CDC’s US Influenza Sentinel Provider 
Surveillance Network (http://www.cdc.gov/flu/). This approach 

they showed that the identity of individuals in contrast to ran-
dom-mover assumption can significantly influence the emergent 
infection dynamics. Rocha et al. (2011) simulated the spread of 
sexual transmitted infections using SI and SIR models evolving 
over the transmission network constructed from data extracted 
from a Brazilian Internet community where sex buyers rate 
their encounters with escorts.131 The network was extended over 
12 cities. They showed that due to the high clustering and the 
distinct communities of the underling topology, the network 
slows down outbreaks.

Agent-based simulations. In contemporary mathematical epi-
demiology, agent-based modeling represents the state-of-the-art 
for reasoning about and simulating complex epidemic systems. 
These take into account details such as the transportation infra-
structure of the simulated area, the mobility of the population, 
demographics, and epidemiological aspects such as the evolu-
tion of the disease within a host and transmission between hosts 
(Fig. 2). Public-health epidemiologists, researchers, and policy 
makers are turning to these detailed models for reasons of eth-
ics, cost, timeliness, and appropriateness. In epidemic systems, 
testing experimental conditions would put the safety of people at 
risk, creating an ethical problem. In other cases, real-time evalua-
tion of an existing system may be prohibitively long. For example, 
in a disaster, simulation can be used to rapidly evaluate many 
previously unexamined alternatives. In all of these cases, since 
the real-world system under study is a complex system, multi-
agent simulations are used as they are considered to incorporate 
the appropriate level of complexity. For example the Models of 
Infectious Disease Agent Study (MIDAS, https://www.epi-
models.org/midas/pubglobamodel.do), a network launched on 
May 1, 2004 and funded by the US National Institutes of Health 
has as its pilot effort the detailed modeling of the dynamics of a 
hypothetical flu pandemic.

Within this context, Eubank et al. (2004) addressed the use of 
EpiSims, a detailed agent-based simulator which incorporates data 

Figure 2. Schematic of the components of an agent-based epidemic 
simulator.
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models aspiring to approximate the dynamics of real-world cases. 
Within this context, along with the available information rang-
ing from the host-pathogen interaction level to the host-host, city, 
country, and globe level, complex network theory has provided 
the necessary “glue” for the systematic link between epidemiol-
ogy demographics and sociology.

On one hand, for the bridging of the scales of modeling, one 
has to first find the appropriate observable variables for which 
deterministic or stochastic models can be expressed. To this 
direction, data mining techniques that have flourished over the 
last few years can be employed to extract such information. On 
the other hand, due to the complexity of the underlying multi-
scale interactions, such models are built on incomplete knowl-
edge imported, e.g., as parameter, rule evolution, and contact 
network inaccuracies. Thus far, simple brute-force temporal sim-
ulations are used to study the behavior of very large scale detailed 
agent-based simulators in the presence of such inaccuracies. For 
example some of the rules and model’s parameters, such as the 
virus pathogenicity—as this may be expressed in terms of the 
reproduction number—and different social network topologies, 
are examined in order to assess how such factors may influence 
the spread of an outbreak. However, such simple simulations are 
inefficient for the systematic analysis of the emergent epidemic 
in the parameter space. New rigorous computational methodolo-
gies, such as the equation-free multiscale framework,96,139-142 that 
can be used to address this issue have the potential to expedite 
novel computational modeling and analysis as well as to enhance 
our understanding and forecasting capability to combat epidemic 
outbreaks.
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has now been realized as a surveillance web-based tool (http://
www.google.org/flutrends/).

Hulth et al. (2009) processed web queries submitted in a 
Swedish website related to influenza between 2005 and 2007.137 
The authors fitted two models, one for relating web queries 
volume with the total number of laboratory verified influenza 
and the number of persons exhibiting influenza-like symptoms 
treated by physicians in Sweden. The models were used in turn 
to estimate outbreaks of the disease in time as well as to predict 
the influenza evolution. In Chan et al. (2011) a linear model was 
used to relate Google search queries related to dengue in Bolivia, 
Brazil, India, Indonesia, and Singapore using publicly available 
dengue cases between 2003 and 2010.138

Conclusion

In this paper, we discussed and presented key modeling methods 
used for the surveillance and forecasting of infectious disease out-
breaks. Generally speaking, epidemiological models can be cat-
egorized in three classes: statistical, mathematical-mechanistic 
state space, and machine-learning based ones. Public-health orga-
nizations throughout the world use such models to evaluate and 
develop intervention disease outbreak policies for ever-emerging 
epidemics. Simulation allows for rapid assessment and decision 
making, providing quantification and insight into the spatio-
temporal dynamics of a spread. An intensive inter- and multi-
disciplinary research effort is speeding up the developments in 
the field integrating advances from epidemiology, molecular biol-
ogy, computational engineering and science, and applied math-
ematics as well as sociology. Nowadays, molecular, sociological, 
demographic, and epidemiologic data are exploited to develop 
state-of-the-art detailed very large-scale bottom-up agent-based 
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